
$=2016$ EGU Stephan Mueller medal lecture 2.0
not the born geologist ...

... but the trained photographer

## the fascinating nature of images




René Magritte
... image analysis is object analysis

## the worlds of 2 and 3 dimensions




Maurits Escher
... and how to get from one to the other

## symmetry and the space between


black or white - plus or minus - grains or boundaries ...

## chance and probability ...



Newton

Comte de Buffon

Isaac Newton (1643-I727) chance of hitting one of two unequal areas of a circle by a ball

Georges-Louis Leclerc Comte de Buffon (1707-I788)
solutions of franc-carreau and needle problems


Sarkis Andreevich Saltykov (1905-1983) ... stereological theorems
... the statistics of spatial processes
thin sections are random draws...


Achille Ernest Oscar Joseph Delesse (I8I7-I88I)
$V_{V}=A_{A}$

August Karl Rosiwal (1860-I923)
$V_{V}=A_{A}=L_{L}$

Nil Alexandrovich Glagolev (I888-I945)
$V_{V}=A_{A}=L_{L}=P_{P}$

Ervin E. Underwood (1918-1995)
'Quantitative Stereology' (1970)
... and Renée Panozzo (1982)
... taking chances with Monte Carlo
go West ! and do experiments !

... and publish on fabric analysis (?) ...

## from workshops ...


... to the textbook

## let's take a look at three suites of samples ...



Carrara marble


Black Hills quartzite

synthetic mantle

Stefan Schmid
Steve Bauer

Triaxial gas appartus
Center for Tectonophysics

Jan Tullis

Solid medium apparatus Brown University

Miki Tasaka
David Kohlstedt Mark Zimmerman
Torsion apparatus
University of Minnesota
... to see how rheology and microstrcuture are connected
a journey from the upper crust into the mantle ...

... and across the deformation mechanism map

Q: how to recognize deformation mechanisms ...

... when looking at a deformed samples ?

## I st stop:



## motivation: do the Glarus thrust in the lab



Glarus Thrust, drawing by Hans Conrad Escher (18/2)


Friedman, M. and Higgs, N. G.(I 981 ) Calcite fabrics in experimental shear zones:AGU Monograph 24, p. II-28
... and remember 6I5

## celebrating 30 years of simple shear ...


flow law

... 50 years of Center for Tectonophysics

## deforming grains of Carrara marble ...


... now you see them - now you don't ...

## how to measure strain

step I: use $R_{f}-\varphi$ technique


John G. Ramsay


Edwin A. Abbott

step 2: write own software


Two-dimensional strain from the orientation of lines in a plane
Renée Panozzo

- Universitàt Basel. Klingelbergstr 80. CH-4056 Basel. Swizzerland Accepted in revised form 30 June 198.3)

Tectonophysics, 1983

## TWO-DIMENSIONAL ANALYSIS OF SHAPE-FABRIC USING

 PROJECTIONS OF DIGITIZED LINES IN A PLANERENÉE H. PANOZZO
Abteilung für Wissenschaftliche Photographie, Physikalisch-Chemisches Institut, Klingelbergstr. 80, CH-4050 Basel (Switzerland)
(Accepted November 10, 1982)
... from polyhedra in flatland ...

## Ramsay's Rf- $\varphi$ technique works well ...



CTI $600^{\circ} \mathrm{C} \quad 500 \mu \mathrm{~m}$

$\mathrm{R}_{\mathrm{f}}$



CT3 $700^{\circ} \mathrm{C}$

$\mathrm{R}_{\mathrm{f}}$



CT6 $700^{\circ} \mathrm{C}$

$\mathrm{R}_{\mathrm{f}}$



CT2 $800^{\circ} \mathrm{C}$

$\mathrm{R}_{\mathrm{f}}$

... if grain boundaries do not begin to migrate ...

## but the world is not an ellipse ...


... and 'strain fact or fiction' is a paper that never made it

## how to describe the shape change



A simple method for the quantitative discrimination of convex and convex-concave lines

Renée Panozzo, and Helga Hürlimann ${ }^{1}$ )
Microscopica Acta, 1983
Grain size and grain shape analysis of fault rocks Renée Heilbronner *, Nynke Keulen

Tectonophysics 2006

## ... use the famous PARIS factor


the convex hull

... so what does that tell you about real rocks ?

- grain boundaries lead there own life not every outline of a grain is a strain marker
- one mineral can act like two rheological phases strain partitionning is possible - even probable
- locally high strain rates are possible

- symmetry is the eye of the needle ...



## 2nd stop:



## motivation: the grain size of recrystallized quartz


the piezometer - does it hold for shear deformation ?
"...the recrystallized grain size
of the rhomb domain is
approx. $12 \mu \mathrm{~m}$ and that of the
prism domain is approx. 19
$\mu \mathrm{~m}$, correspond-ing to shear
stresses of 93 and $64 \mathrm{MPa} . . \mathrm{"}$


texture dependence of grain size: does it really exist ?

## axial and shear experiments ...



Jan Tullis and ...

dislocation creep regimes I, 2, 3

her Grigg's apparatus


Heilbronner \& Tullis (2006)

| 1.5 | 2.5 | 4 | 5 | 6 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- |



circular polarization
... of Black Hills Quartzite ...

## we used CIP-derived orientation images



## and performed segmentation in texture space ...


c -axis orientation image

grain boundary map

area equivalent radius $(\mu \mathrm{m})$
same technique was used for piezometer


|  | $r$ equ $(\mu \mathrm{m})$ |
| :--- | :---: |
| Points | 3605 |
| Mean | 4.86 |
| Median | 4.24 |
| RMS | 5.68 |

... to derive the grain size

## ten years later: BHQ revisited



The grain size(s) of Black Hills Quartzite deformed in the dislocation creep regime.


Analysis of crystallographic preferred orientations of experimentally deformed Black Hills Quartzite
$\Psi_{1}$
Euler coloring
${ }^{1}$ Department of Environmental Sciences Geological Institute Bernoullistrasse 32 CH-4056 Basel Switzerland Correspondence to: Rüdiger Kilian (ruediger.kilian@unibas.ch)

## from CIP to EBSD



## from IPF to CIP look-up tables

## from CIP to EBSD

regime I (wl092)


CIP
EBSD
from IPF to CIP look-up tables

## compare EBSD to coptical microscopy

regime I (wl092)

... using the conoscopic CLUT
texture and grain size of BHQ ... revisited

... using SEM / EBSD full resolution!

## grain size maps


area equivalent diameter ( $\mu \mathrm{m}$ )
$\begin{array}{llllll} & 5 & 5 & 10 & 15 & 20\end{array}$
 $5,5,5 x^{2}$







## checking the $Y$ domain



2D





... and the subdomains (...)

## ... what do 2D means tell us about 3D means ?


so what is an average diameter really ?


## we need the full (3D) picture


... mastering the art of Image Analysis in Earth Sciences

## mode of the volume weighted distribution ...


... of diameters ( $\mathrm{D}_{\text {equ }}$ ) of volume equivalent spheres ...

## check against the piezometer !



Cross et al., 2017
... 'good old' Stipp \& Tullis, remapped by Prior ...

## plot the shear experiments on it



CIP grain boundaries RMS of 2D sections

Stipp \& Tullis (2003)
EBSD grain boundaries mode of 3D grains

Heilbronner \& Tullis $(2002,2006)$ re-measured

... 3D modes are not the same as 2D RMS !

## get the EBSD maps of the axial experiments


... and calculate the 3D modes for the piezometer

## apples and ... different apples


... you ask a silly question you get a silly answer ...
different piezometer for shear vs. axial



and different for $Y$-texture domian ?
... so what about the strength of the lithosphere?

- texture domains $\rightarrow$ composite material
- bulk textures don't exist
$\Rightarrow$ bulk properties don't exist locally
- piezometer for axial versus shear
- different grain sizes coexist
$\Rightarrow$ different flow stresses may co-exist
$\Rightarrow$ viscosity contrasts among domains



- different piezometer for different domains

- ... or does the recrystallized piezometers have a problem ?


## 3rd stop:



## motivation: weakening of lower lithosphere

$$
\dot{\varepsilon}=A \cdot \Delta \sigma^{n} \cdot \exp (-Q / R T)
$$



## JOURNAL OF GEOPHYSICAL RESEARCH Solid Earth



Research Article
Rheological weakening of olivine + orthopyroxene aggregates due to phase mixing, Part 1: Mechanical behavior Miki Tasaka $\square$, Mark E. Zimmerman, David L. Kohlstedt Accepted manuscript online: 8 September 2017 Full publication history DOI: 10.1002/2017JB014333 View/save citation

Tasaka et al. (JGR, 2017)

dislocation creep ?

phase mixing ?

diffusion creep ?

$10 \mu \mathrm{~m}$

## how to mix olivine and orthopyroxene ...



Gas medium High pressure Torsion apparatus (UMN)


Miki Tasaka


Mark Zimmerman


David Kohlstedt
$70 \%$ iron-rich olivine 30\% orthopyroxene hotpressed @l200․ $\mathrm{d} \sim 15 \mu \mathrm{~m}$

in olivine:
MeO dissolves at maximum $\sigma \mathrm{l}$. Reaction ol $\rightarrow$ opx

```
in orthopyroxene:
MeO diffuses to tension O3.
Reaction opx }->\mathrm{ ol
```

$\underset{\text { (ol) }}{\mathrm{r} 1: \mathrm{Me}_{2} \mathrm{SiO}_{4}-\mathrm{MeO}} \rightarrow \underset{\text { (opx) }}{\mathrm{MeSiO}_{3}}$

- MeO
r2: $\mathrm{MeSiO}_{3}+\mathrm{MeO} \rightarrow \mathrm{Me}_{2} \mathrm{SiO}_{4}$
- $\rightarrow$ diffusion (opx)
(ol) pass
$\mathrm{Pc}_{\mathrm{c}}=300 \mathrm{MPa}$ $\mathrm{T}=1200^{\circ} \mathrm{C}$
... by mechanical mixing and heterogeneous nucleation


## the geometry of dislocation and diffusion creep

sample preparation
mechanical mixing

deformation

... models for mixing and deformation

## describing spatial distributions ...


random
« \% phase B


clustered
$\longleftarrow$ \% phase B ——


ordered

... in terms of phase and grain boundary probability ...

## describing spatial distributions ...


... in terms of phase and grain boundary probability ...

## describing spatial distributions ...


... in terms of phase and grain boundary probability ...

## so which spatial distributions do we expect ...


dislocation creep
diffusion creep


$\longleftarrow$ \% olivine $\qquad$
$\longleftarrow$ \% olivine
$\qquad$


... from mixing to dislocation creep to diffusion creep ?

## and which spatial distributions do we get ?

983 starting material


994 dislocation creep


1006 diffusion creep

$\longleftarrow$ \% olivine

$\longleftarrow$ \% olivine $\qquad$

... not what we expect!

## even the starting material is ordered !!



Explore this journal >
Research Article
Rheological weakening of olivine + orthopyroxene aggregates due to phase mixing, Part2: Microstructural development

Miki Tasaka М, Mark E. Zimmerman, David L. Kohlstedt, Holger Stünitz,
Renée Heilbronner
Accepted manuscript online: 8 September 2017 Full pubilication history
DOI: 10.1002/2017JB014311 View/save citation

Tasaka et al. (JGR, 20I7)

and 'perfect mixing' $=$ random process !

## ... and what about life in general ?

- thing sare often not what you think they are !
random processes create clustering perfect mixing is not random strain often does not leave any trace
- take nothing for granted! ... not even the recrystallized quartz piezometer !
- learn to live without steady state life - as any process of deformation - may be transitional ...
- enjoy research while it lasts
... small samples require big statistics
... diffuse data require precise measurements


